CONJUGATE REDUCTION OF QUINONE DERIVATIVES,

A ROUTE TO PHENOL KETO-TAUTOMEB EQUIVALENTS

Barbara J. Dotg and Gary W. Morrow*

Department of Chemistry, The University of Dayton, Dayton, Ohio 45469

Swy: 1,4-addition of hydride to quinone monoketals 1 and g-quinol ethers 2, mediated by bis-(2,6-di-<u>t</u>-butyl-4-methylphenoxy)-methylaluminum (MAD), affords 4,4-substituted-2*cyclohexen-l-ones 3, which represent keto-tautomer equivalents of phenols.*

Quinone monoketals 1 and para-quinol ethers 2 serve as useful synthetic intermediates' which are readily available by electrochemical oxidation of substituted phenols and anisoles or by chemical oxidation of phenols.² We envisioned quinone derivatives 1 and 2 as possible precursors to keto-tautomer equivalents of substituted phenols via a conjugate reduction process (Scheme 1). The resulting cyclohexenone derivatives 3 would possess a leaving group (-OR) in the 4-position, formally representing a latent double bond via a subsequent elimination process. Reaction of nucleophilic reagents such as RLi or RMgX with 3, followed by acidcatalyzed aromatization would afford substituted aromatic compounds.

Scheme 1. Phenol Keto-Tautomer Equivalent Strategy

Unfortunately, conventional methods for conjugate reduction using hydride reagents or dissolving metals yield only the corresponding phenols when applied to quinone derivatives 1 *or* 2.1 Furthermore, aromatixation occurs exclusively from attempted conjugate additions to 1 or 2 using cuprate-type reagents, presumably via electron transfer processes.¹

Thus, a new approach to conjugate reduction of cyclic enones was investigated,^{3a,b} using both a sterically crowded hydride source and the bulky Lewis acid bis-(2,6-di-tert-butyl-4nethylphenoxy)-methylaluminum (MAD)' as a carbonyl-complexing auxiliary. Sterically blocking 1,2-addition of hydride to the carbonyl carbon would force addition to proceed via the 1,4 pathway. This has been observed for the MAD-mediated addition of certain organolithium and organomagnesium compounds to cyclohexenones⁵ as well as quinone derivatives 1 and 2.6

Table. MAD-Mediated 1,4-Reduction of Quinone Derivatives 1 and 2

aisolated yields, based on 1 or 2. bdiseric product formed.

Addition of a **toluene solution of quinone derivatives 1 or 2 to two equivalents of MAD in** toluene was followed by addition of lithium-tri-sec-butyl borohydride (L-Selectride)⁷ at **-78eC until the characteristic dark purple color of the MAD-carbonyl complex dissipated. Standard work up and silica gel chromatography afforded the enone products 3 in fair to good yield.**

The reduction of unsymmetrically substituted quinone monoketals la-c (Table, entries 1-3) showed the expected regiospecificity, affording enone products resulting from addition to the **lesser substituted** of **the two double bonds. For para-quinol ethers 2a-d (Table, entries 5-8) reduction gave the corresponding enones with no evidence for competing 1,2-reduction. With the exception of 3e, enone' products 3 proved to be reasonably stable and could be stored for several weeks in a freezer in base-washed glassware without aroaatisation.**

sclwm 2. **Diserisation of Quinone Monoketal** ld

For unsubstituted quinone monoketal Id (Table, entry 4), no 1,4-reduction product could be isolated. Instead, a polar, crystalline compound was **obtained in 65% yield and subsequently identified by X-ray analysis** as **dimeric product 4 (Figure 1). Product 4 is presumably formed via initial 1,4-addition of hydride followed by a Michael-Michael addition eequence facilitated in part by the presence of MAD (Scheme 2). This unexpected transformation of Id occurred exclusively-i.e. no products of type 3 could he detected-even after reversal of the mode of addition of hydride reagent (see representative procedures).** That the reduction process was sensitive to steric effects was further emphasized by the formation of only a small amount (5 X) of dimeric product⁹ (similar in structure to 4) **during reduction of 2d (Table, entry 8). No dimeric products were isolable from reduction of** the substituted quinone monoketals la-c or from para-quinol ethers other than 2d.

The reported directing effect of metboxyl groups in the 4-position on the conjugate addition of orgsnolitbium or organomagnesium reagents to quinone derivatives 1 and 2 nay not occur here.^{6a} The conjugate reduction process reported herein is probably directed primarily **by steric effects, since coordination of oxygen with the bulky L-Selectride would he unlike**ly. The absence of such an effect in similar conjugate reductions has been noted by others.^{6b}

Figure 1. X-Ray Structure of Dimeric Product 4

While we have not extensively studied the chemistry of enones 3, reaction of 3g with phenyllitbium followed by treatment of the crude 1,2-adduct with pars-toluene sulfonic acid in chloroform afforded para-terphenyl 5 in 56% yield (Scheme 3). Thus, 3g served as the **keto-tautomer equivalent of psra-phenyl phenol in this reaction sequence, representing a potentially useful new aethod for the formation of aryl-aryl bonds.**

Scheme 3. Synthesis of para-Terpbenyl 5

Puture work will focus on the synthetic utility of enones 3 in other aryl-carbon bondforming reactions. Purtber, the unusual dimeriration process observed from reduction of Id may have implications for tbe chemistry of kinetic enolates derived from other cyclic enones.

Acknowledgment. This research was supported by a grant from Research Corporation. We also thank Drs. Albert V. Pratini and Howard C. Knachel for their help in obtaining the X-ray data.:

References and Motes

- 1. Swenton, J. S., *Acct. Chem. Res., 1983, 16, 74.* Swenton, J. S., *The Chemistry of Quinonoid Compounds;* Rappoport, Z., Patai, S., Eds.; John Wiley: New York, 1988, Vol. 2, Part 2, p 899.
- 2. Ronlan, A.; Palmquist, 8.; Pettersson, T.; Nillson, A., J. *Chem. Sot., Perkin Trans. I,* 1978, 696. Henton, D. R.; McCreery, R. L.; Swenton, J. S.; J; Org. *Ches.,* 1980, 45, 3422, and references cited therein.
- 3. a) For a recent hydridocuprate reduction method, see: Lipshutz, B.H.; Ung, C.S.; Sengupta, S 0, *Synlett,* 1989, 1, 64. b) For a recent report of the hydride reduction of a quinone monoketal to its saturated derivative, see: Koenig, T.M.; Daeuble, J.F.; Brestensky, D.M.; Stryker, J.M., *Tetrahedron Lett.,* 1990, 3237.
- 4. *Maruoka, K.;* Nonoshita, II.; Yamamoto, H., *Tetrahedron Lett.,* 1987, 28, 5723.
- 5. Maruoka, K.; Itoh, T.; Sukarai, M.; Nonoshita, K.; Yamamoto, H., *J. A&er. Chem. Sot.,* 1988, *110, 3588.*
- 6. *a)* Stern A. J.; Rohde, J. J.; Swenton, J. S., *J. Org. Chem.,* 1989, 54, 4413. b) Fer the alkoxide directed conjugate reduction of p-quinols, see: Shah, R.D.; Liotta, D.; Cherry, D.A.; Mills, J.E.; Rodgers, J.D.; Maryanoff, C.A., *J. Amer. Chen. Sot.,* 1988, *110,* 3702.
- 7. In the absence of MAD, only 1,2-reduction occurs. L-Selectride was purchased as a. 1.0 M solution in THF, but the THF must be replaced with toluene prior to using the reagent in these reactions.
- 8 A representative procedure (Table, entry 4) is as follows: to a solution of BHT (2,6-di-t-butyl-4-methyl phenol, 2.8 g, 13 mmol) in toluene (65 ML) under, Nz was added trimethylaluminum (6.5 mmol, 3.25 mL of a 2.0 **M** solution in toluene) dropwise. After stirring for 15 min, the solution was cooled to -78° C and a solution of $4,4$ -dimethoxy-2,5cyclohexadienone $1d$ (0.5 g, 3.25 mmol) in toluene (1.0 mL) was added. To the resulting purple solution was added L-Selectride (3.25 mmol, 3.25 mL of a 1.0 M toluene solution) ω ver 1 min. The reaction was quenched with sat NaHCO₃ (1.0 mL), filtered to remove aluminum malts, dried over CaSO4 and cone in vacuo. The resulting oil was chromatographed on silic \leq (6" X 1/2" column, 15:85 EtOAc/hexanes) to yield dimeric product 4 (0.324 g, 65%) as white crystals: mp 98.5-100°C; IR (KBr) cm⁻¹ 1732, 1675, 1247, 1114, 1092, 1070, 1032, 1006, 967, 932; ¹H NMR (CDC13) 6 6.41 (ABq, $J_{AB} = 18$ Hz, 2H), 3.20 (s, 3H), 3.13 (s, 3H), 3.03 (s, 3H), 2;88i;(s, 3H), 2.89-1.50 (str m, 8H). Anal. Calcd for CisHzzOs: C, 61.92; H, 7.14. Found: C_1 , $\{1, 7, 14.$
- 9. The structure of this dimeric product was inferred by comparison with NMR and IR data of ³⁶ but was not rigorously established. IR, NMR and combustion analysis were consistent with \bullet intructure analogous to 4.